Abstract

The Arp2/3 complex, which generates both branched but also linear actin filaments via activation of SPIN90, is evolutionarily conserved in eukaryotes. Several factors regulate the stability of filaments generated by the Arp2/3 complex to maintain the dynamics and architecture of actin networks. In this review, we summarise recent studies on the molecular mechanisms governing the tuning of Arp2/3 complex nucleated actin filaments, which includes investigations using microfluidics and single-molecule imaging to reveal the mechanosensitivity, dissociation and regeneration of actin branches. We also discuss the high-resolution cryo-EM structure of cortactin bound to actin branches, as well as the differences and similarities between the stability of Arp2/3 complex nucleated branches and linear filaments. These new studies provide a clearer picture of the stabilisation of Arp2/3 nucleated filaments at the molecular level. We also identified gaps in our understanding of how different factors collectively contribute to the stabilisation of Arp2/3 complex-generated actin networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.