Abstract

Pore fluids are ubiquitous throughout the lithosphere and are commonly cited as a major factor producing slow slip and complex modes of tectonic faulting. Here, we investigate the role of pore pressure on slow slip and the frictional stability transition and find that the mode of fault slip is largely unaffected by pore pressure once we account for effective stress. Ambient temperature experiments are done on synthetic fault gouge composed of quartz powder with a median grain size of 10μm with an average permeability of  8E-17m2 – 6E-18m2 from shear strains 0 - 26. We conduct constant velocity experiments at 20MPa σn’, with Pp/σn’ratios of λ from 0.05 to 0.28. Under these conditions, dilatancy strengthening is minimal and we find that slip rate dependent changes in the critical rate of frictional weakening are sufficient to explain slow slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.