Abstract

Most steady flows with constant vorticity and elliptical streamlines are known to be unstable. These, and certain axisymmetric time-periodic flows, can be analysed by Floquet theory. However, Floquet theory is inapplicable to other time-periodic flows that yield disturbance equations containing a quasi-periodic, rather than periodic, function. A practical method for surmounting this difficulty was recently given by Bayly, Holm & Lifschitz. Employing their method, we determine the stability of a clas of three-dimensional time-periodic flows: namely, those unbounded flows with fixed ellipsoidal stream surfaces and spatially uniform but time-periodic strain rates. Corresponding, but bounded, flows are those within a fixed ellipsoid with three different principal axes. This is perhaps the first exact stability analysis of non-reducibly three-dimensional and time-dependent flows. Though the model has some artificial features, the results are likely to shed light on more complex systems of practical interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.