Abstract

Abstract A linear analysis of the stability of the course of serpentization, that is, of the exothermic hydration reaction, due to the flow of water in a kimberlite pipe is carried out, taking both the heat conduction and the convective heat transfer by the fluid saturating the pipe rocks into account. It is shown that two different serpentization processes exist: a homogeneous process and an inhomogeneous process associated with a loss of stability by the homogeneous process and a non-uniform reaction rate distribution. Dimensionless similarity parameters that determine the course of the reaction are proposed. It is shown that convective heat transfer promotes a stabilization of the flow and the formation of a homogeneous serpentinite distribution. Other conditions being equal, an increase in the convective heat flux leads to an increase in the wavelengths of the unstable perturbations and to a decrease in their amplitude. A critical value of the flow rate exists, and, when this is exceeded, instability does not develop and serpentinization takes place under homogeneous conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call