Abstract

In the present paper, the modified Runge-Kutta method is constructed, and it is proved that the modified Runge-Kutta method preserves the order of accuracy of the original one. The necessary and sufficient conditions under which the modified Runge-Kutta methods with the variable mesh are asymptotically stable are given. As a result, the $\theta$-methods with $\tfrac 12\leq \theta \leq 1$, the odd stage Gauss-Legendre methods and the even stage Lobatto IIIA and IIIB methods are asymptotically stable. Some experiments are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.