Abstract
Membrane electrode assemblies (MEAs) for water electrolysis were prepared by decal transferring an Ir black anode and a Pt black cathode on the two sides of a perfluorosulfonate solid polymer electrolyte (SPE) Nafion112 membrane. Performance stability of an MEA with 4 cm 2 effective electrode area was tested for 208 h in a single cell water electrolysis setup. The catalysts of both electrodes on the MEAs were characterized by means of XPS and XRD. Samples of feed water were analyzed by using conductivity meter, inductance coupling plasma optical emission spectroscopy (ICP-OES), ionic chromatography and total organic carbon (TOC) analyzer. Surface oxidation of the anodic Ir catalyst was evidenced, from the original metal Ir to 71.5% Ir 2O 3 and 28.5% IrO 2 after 208 h of electrolysis. While the metallic state of Pt on the cathode did not change during the same period of operation, the crystallite size of the Pt catalyst increased from 9.1 nm to 9.8 nm. Water analysis shows there is significant accumulation of impurities in the feed water, which can contaminate the MEA. Fortunately, the MEA restored more than 98% of its original performance after a simple treatment with 1 mol/L H 2SO 4 solution. This indicates the short period performance decline of the MEA is mainly caused by a recoverable contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.