Abstract

The stability of Tollmien-Schlichting waves propagating at an angle to the main flow in a nonequilibrium compressible supersonic boundary layer is investigated within the linear theory of hydrodynamic stability. The dependences of the critical Reynolds number on the degree of disequilibrium and on the Mach number of undisturbed flow are found at different angles of wave propagation. It is demonstrated that the critical Reynolds number in a nonequilibrium medium may decrease appreciably with increasing degree of disequilibrium, which results in the reduction of the characteristic length of the linear region of transition to turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.