Abstract
The effects of operating conditions of sonication on the stability of some commercially purified enzyme preparations were investigated. Buffered solutions of six enzymes, alcohol dehydrogenase (ADH), malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), l-lactic dehydrogenase (LDH), alkaline phosphatase (AP) and β-galactosidase (βG)were sonified over a range of power outputs up to 40 W. The enzymes had variable stabilities with complete stability for AP, and over 70% inactivation for G6PDH. Some inactivation models were tested for an understanding of the relation between sonification intensity and enzyme stability. Sonication processing times also affected the inactivation rate of ADH and MDH. The stability of sonified ADH was decreased with time when compared with unsonified controls. Increasing the viscosity of process fluid with glycerol gave 39% inactivation of ADH, while the control showed 15% inactivation for the operational conditions. The forces involved in the fluid must therefore have a significant role to play in the inactivation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.