Abstract
On the basis of Xu’s interfacial wave theory, the stability of dendritic growth in a convective binary alloy melt with buoyancy effect is studied using the asymptotic method. The resulting asymptotic solution of equations reveals that the stability mechanism of dendritic growth in the binary alloy melt with buoyancy-driven convection is similar to that in a pure melt. Dendritic growth is stable above and unstable below a critical stability number [Formula: see text], which is determined by the quantization condition. In particular, there is a critical morphological number in the binary alloy melt. When the morphological number is less than the critical morphological number, the tip growth velocity increases, the tip curvature radius and oscillation frequency decrease, and the interface becomes thinner and smooth. When the morphological number is larger than the critical morphological number, the tip growth velocity decreases, the tip curvature radius and oscillation frequency increase, and the interface becomes fatter and rough. The result demonstrates that in a microgravity environment, there is a critical initial concentration such that below it thermal diffusion dominates, the tip growth velocity increases, the tip curvature radius and oscillation frequency decrease, and the interface becomes thinner and smooth; above it, solute diffusion dominates, the tip growth velocity decreases, the tip curvature radius and oscillation frequency increase, and the interface becomes fatter and rough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.