Abstract

The overall stability of a movable high-strength inverted-triangular steel bridge is worth studying because of its new truss structure. In this study, an approach was proposed based on the stiffness equivalence principle in which the inverted-triangle truss structure was modeled as a thin-walled triangular beam. On this basis, the calculation of the critical load of elastic stability of a movable high-strength inverted-triangular steel bridge with variable rigidity at both ends and locally uniformly distributed load was carried out based on the energy theory, which was in good agreement with existing theories. A material performance test at BS700 was carried out to establish the material properties, and then a finite element model of the bridge was established, the results of which were compared with those of the experimental load test, in order to verify the accuracy of the finite element model. Considering material nonlinearity and geometric nonlinearity, nonlinear buckling analysis of the bridge was conducted and the factors influencing the bridge’s ultimate bearing capacity were analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.