Abstract

Subduction of calcium carbonate, sequestered in the oceanic crust by hydrothermal metamorphism and biogenic action, accounts for a significant flux of carbon into the mantle, where it contributes to the genesis of carbonatitic and silica-undersaturated melts. However, the reported phase relations in the system CaCO3, notably the transition boundary from disordered calcite (calcite V, here ccv) to aragonite (ara), vary considerably among different studies. Moreover, the thermodynamic properties of ccv and of liquid CaCO3 (CaCO3L) remain to be determined. In order to address the dearth of experimental data on phase relations, and to determine a set of internally consistent thermodynamic properties for ara, ccv and CaCO3L, multi-anvil experiments were performed at 3–6 GPa and 1300–1750 °C. By re-evaluating all experimental data, the transformation of ccv-ara fits the equation Tccv-ara = 397.6 + 320.17 × P and the melting curve Tm = 1578.9 + 139.65 × P − 11.646 × P2, where pressure is in GPa and temperature in K. Thermodynamic properties retrieved for calcite V and liquid CaCO3 are used to compute phase diagrams of relevance for chemical compositions representative of eclogite heterogeneities of the astenospheric mantle, and compared with experimentally derived phase relationships.Aragonite represents a carbonate of major abundance in carbonated eclogites at high temperature, close to the solidus; its ability to fractionate REE and Ba-Sr contributes to the peculiar geochemical signatures of silica undersaturated magmas. The relatively refractory nature of aragonite impacts on our understanding of the deep carbon cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.