Abstract

Using density functional theory (DFT), we have investigated the stability and electronic structure of lithium (Li) adsorbed in triplet form of (5.0) carbon nanotubes (CNTs) and (5.0) boron nitrogen nanotubes (BNNTs). We have mainly found that three (5.0) tubes are covalently connected. The triplet form is an energetically stable semiconductor. Li atom can be chemically adsorbed in the triplet form of nanotubes (NTs). Meanwhile, upon the adsorption of Li, the triplet form convert into metal. Hence, the triplet form can improve reactivity and sensitivity of NTs to Li significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.