Abstract

AbstractThe paper is concerned with the unconditional stability and error estimates of fully discrete Galerkin-Galerkin FEMs for the equations of incompressible miscible flows in porous media. We prove that the optimal L2 error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Theoretical analysis is based on a splitting of the error into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of the corresponding time-discrete PDEs, which was proposed in our previous work [26, 27]. Numerical results for both two and three-dimensional flow models are presented to confirm our theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.