Abstract
This study focuses on the stability and catastrophic behavior of finite periodic solutions in non-linear differential equations. The occurrence of folding surfaces and their relationship with saddle-node bifurcations are explored, being classified as fold and butterfly types of catastrophes. Additionally, the application of catastrophe theory is discussed to analyze the qualitative changes in solutions with the change in system parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.