Abstract

The stability of periodic solutions of partial differential equations has been an area of increasing interest in the last decade. In this paper, we derive all periodic traveling wave solutions of the focusing and defocusing mKdV equations. We show that in the defocusing case all such solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are periodic with period equal to an integer multiple of the period of the underlying solution. We do this by explicitly computing the spectrum and the corresponding eigenfunctions associated with the linear stability problem. Next, we bring into play different members of the mKdV hierarchy. Combining this with the spectral stability results allows for the construction of a Lyapunov function for the periodic traveling waves. Using the seminal results of Grillakis, Shatah, and Strauss, we are able to conclude orbital stability. In the focusing case, we show how instabilities arise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.