Abstract

The primary goal of this work is to provide a DFT investigation report on the stability and mechanical, electronic, and thermal properties of the new MAX-phase compounds M3GaC2 (M: Ti or Zr). We discovered that the investigated compounds were stable and could be synthesized experimentally after testing their energy, mechanical, and dynamic stabilities. The derived values were in good agreement with the only known experimental data for the equilibrium lattice constants. The mechanical properties revealed that the studied compounds were anisotropic hard materials dominated by covalent bonds. The electronic structures and lattice thermal conductivities were also evaluated, revealing the metallic behavior of the compounds. Owing to the high melting temperature and low thermal conductivity, the compounds were estimated as promising materials for thermal barrier coating and hostile environments. Finally, we consider the present report to be the first quantitative theoretical prediction, and we hope that it will inspire new theoretical and experimental research on these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.