Abstract

The response of yeast to osmotic stress has been proposed to rely on the HOG-MAP kinase signalling pathway and on transcriptional activation mediated by STRE promoter elements. However, the osmotic induction of HAL1, an important determinant of salt tolerance, is HOG independent and occurs through the release of transcriptional repression. We have identified an upstream repressing sequence in HAL1 promoter (URSHAL1) located between -231 and -156. This promoter region was able to repress transcription from a heterologous promoter and to bind proteins in non-stressed cells, but not in salt-treated cells. The repression conferred by URSHAL1 is mediated through the Ssn6-Tup1 protein complex and is abolished in the presence of osmotic stress. The Ssn6-Tup1 co-repressor is also involved in the regulation of HOG-dependent genes such as GPD1, CTT1, ALD2, ENA1 and SIP18, and its deletion can suppress the osmotic sensitivity of hog1 mutants. We propose that the Ssn6-Tup1 repressor complex might be a general component in the regulation of osmostress responses at the transcriptional level of both HOG-dependent and -independent genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.