Abstract
In recent years, the steady-state visual evoked potentials (SSVEP) based brain control method has been employed to help people with disabilities because of its advantages of high information transmission rate and low training time. However, the existing SSVEP brain control methods cannot adapt to dynamic or unstructured environments. Moreover, the recognition accuracy from the conventional decoding algorithm still needs to improve. To address the above problems, this study proposed a steady-state hybrid visual evoked potentials (SSHVEP) paradigm using the grasping targets in their environment to improve the connection between the subjects' and their dynamic environments. Moreover, a novel EEG decoding method, using the multivariate variational mode decomposition (MVMD) algorithm for adaptive sub-band division and convolutional neural network (CNN) for target recognition, was applied to improve the decoding accuracy of the SSHVEPs. 18 subjects participated in the offline and online experiments. The offline accuracy across 18 subjects by the 9-target SSHVEP paradigm was up to 95.41 ± 2.70 %, which is a 5.80% improvement compared to the conventional algorithm. To further validate the performance of the proposed method, the brain-controlled grasping robot system using the SSHVEP paradigm was built. The average accuracy reached 93.21 ± 10.18 % for the online experiment. All the experimental results demonstrated the effectiveness of the brain-computer interaction method based on the SSHVEP paradigm and the MVMD combined CNN algorithm studied in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.