Abstract

The heterodimeric protein SRP9/14 bound to the Alu sequences of SRP RNA is essential for the translational control function of the signal recognition particle (SRP). The Alu RNAs of primate cells are believed to be derived from SRP RNA and have been shown to bind to an SRP14-related protein in vitro. We have used antibodies to characterize SRP9/14 and examine its association with small RNAs in vivo. Although SRP9 proteins are the same size in both rodent and primate cells, SRP14 subunits are generally larger in primate cells. An additional alanine-rich domain at the C-terminus accounts for the larger size of one human isoform. Although the other four SRP proteins are largely assembled into SRP in both rodent and primate cells, we found that the heterodimer SRP9/14 is present in 20-fold excess over SRP in primate cells. An increased synthesis rate of both proteins may contribute to their accumulation. The majority of the excess SRP9/14 is cytoplasmic and does not appear to be bound to any small RNAs; however, a significant fraction of a small cytoplasmic Alu RNA is complexed with SRP9/14 in a 8.5 S particle. Our findings that there is a large excess of SRP9/14 in primate cells and that Alu RNAs are bound to SRP9/14 in vivo suggest that this heterodimeric protein may play additional roles in the translational control of gene expression and/or Alu transcript metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.