Abstract

The LPA3 receptor is a G protein-coupled receptor that binds extracellular lysophosphatidic acid and mediates intracellular signaling cascades. Although we previously reported that receptor inhibition using siRNA or chemical inhibition obliterates the viability of melanoma cells, the mechanism was unclear. Herein we hypothesized that amino acids comprising the Src homology 3 (SH3) ligand binding motif, R/K-X-X-V/P-X-X-P or (216)-KTNVLSP-(222), within the third intracellular loop of LPA3 were critical in mediating this outcome. Therefore, we performed site-directed mutagenesis of the lysine, valine and proline, replacing these amino acids with alanines, and evaluated the changes in viability, proliferation, ERK1/2 signaling and calcium in response to lysophosphatidic acid. Our results show that enforced LPA3 expression in SK-MEL-2 cells enhanced their resiliency by allowing these cells to oppose any loss of viability during growth in serum-free medium for up to 96 h, in contrast to parental SK-MEL-2 cells, which show a significant decline in viability. Similarly, site-directed alanine substitutions of valine and proline, V219A/P222A or 2aa-SK-MEL-2 cells, did not significantly alter viability, but adding a further alanine to replace the lysine, K216A/V219A/P222A or 3aa-SK-MEL-2 cells, obliterated this function. In addition, an inhibitor of the LPA3 receptor had no impact on the parental SK-MEL-2, 2aa-SK-MEL-2 or 3aa-SK-MEL-2 cells, but significantly reduced viability among wt-LPA3-SK-MEL-2 cells. Taken together, the data suggest that the SH3 ligand binding domain of LPA3 is required to mediate viability in melanoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.