Abstract

The vestibulo-ocular reflex (VOR) was studied in adult squirrel monkeys before and after adaptation to magnifying and minifying viewing conditions. Monkeys were subjected to broadband (0.05-0.71 Hz) conditioning rotation for six hours in head yaw, pitch, and roll on separate occasions, and the VORs in these three planes were studied in darkness to assess adaptive plasticity in the reflexes. The gain of the horizontal VOR (H-VOR) averaged 0.8 across the frequency bandwidth studied (0.025-4 Hz). Phase was near 0 degrees from 4 to around 0.1 Hz, but developed a progressive lead as frequency declined further. Normal vertical VOR (V-VOR) gain climbed from 0.6 at 0.025 Hz to near 1 as frequency increased to 4 Hz. Phase lead was more pronounced at low frequencies than in the H-VOR. The normal torsional VOR (T-VOR) qualitatively resembled the V-VOR, showing similar phase but lower gains (0.3-0.7) across the frequency bandwidth. These findings suggest that the dynamics of the V-VOR and T-VOR resemble canal characteristics more closely than does the H-VOR. After adaptation to visual minification and conditioning rotation (0.5X for yaw and pitch, 0X for roll), gain decreased in each of the planes of conditioning. Similarly, gain increased in the plane of conditioning after adaptation to visual magnification (2X). The adaptive changes were greater at low (0.025-1 Hz) than at high (2.5-4 Hz) frequencies, and were more robust when gain was driven downward than upward. However, control (sham) adaptation experiments showed that VOR gain tended to drop slightly over 6 h in the absence of adaptive drive to do so, suggesting that the gain modifications may be more symmetric when referenced to the control. Adaptive VOR gain enhancement or decrement in the plane of conditioning did not result in systematic and parallel changes in orthogonal VOR planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call