Abstract
AbstractLet E be an elliptic curve defined over ℚ and without complex multiplication. Let K be a fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes p ≤ x for which ℚ(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and unconditionally we show that this number is We also prove that the number of imaginary quadratic fields K, with −disc K ≤ x and of the form K = ℚ(πp), is ≫E log log log x for x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.