Abstract

This paper analyzes a spurious regression involving AR(p) infinite-variance processes in the presence of structural breaks by least squares using asymptotic theory. It is found that when regressing two independent infinite-variance sequence with breaks in the level and slope of trend, no matter whether the breaks occur at different points or not, the t-ratios become divergent and spurious phenomenon happens. The intuition behind this is that structural breaks can increase persistency in the level of regression errors, which then leads to spurious regressions. Simulation reveals that the effects of spurious regression not only depend on the autoregressive parameter and tailed index, but are sensitive to the presence of a linear trend in the regression model, and to the relative location of breaks with the sample. As a result, spurious effects might occur more often than we previously believed as they can arise even between AR(p) infinite-variance series with structural breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.