Abstract

Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease–related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a “core” area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms.

Highlights

  • Mammals are host to a wide diversity of infectious agents [1,2]

  • We developed an individual-based model to investigate how social, ecological and parasitological factors influence the spread of fecally transmitted infectious agents in socially structured populations

  • We focused on the first two of these mechanisms by investigating whether the rate of movement between groups or range overlap has a bigger impact on the spread of parasites in socially structured populations

Read more

Summary

Introduction

Mammals are host to a wide diversity of infectious agents [1,2] Many of these parasites and pathogens are gastrointestinal and spread through fecal-oral transmission routes which involves fecal contamination of the soil, food items or other substrates and subsequent consumption of infectious stages of the parasite by other hosts. A variety of gastrointestinal infectious agents are well known in human populations, including Norwalk virus, pathogenic E. coli, cholera, and Cryptosporidium. Many of these infectious organisms – hereafter referred to as parasites – are harmful to wild animals, for example by increasing mortality and reducing fecundity [11,12,13,14]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.