Abstract

In many decision problems, outcomes are not reached after a single action but rather after a series of events or states. To optimize decisions over multiple states, representations of how good or bad the outcomes are, that is, the outcomes’ valence, should spread across states. One mechanism for valence spreading is a temporal, state-independent process in which a single valence representation is updated when an outcome is experienced and fades away afterwards. Each state’s valence is based on its temporal proximity to the experienced outcome. An alternative, state-dependent mechanism relies on the structure of transitions between states, updating a separate valence representation for each state according to its spatial distance from the outcomes. We examined how these mechanistic accounts shape the spread of two formats of valence representation, feelings (affective valence) and knowledge (semantic valence), between states.In two pre-registered experiments (N = 585), we used a novel task in which participants move in a four-state maze, one of which contains an outcome. The participants provide self-reports of affective and semantic valence throughout the maze and after finishing it. Results show that the affective representation of negative valence is more localized in state-space than the semantic representation. We also found evidence for the relative reliance of the affective valence on a temporal, state-independent mechanism and of the semantic valence on a structured, state-dependent mechanism.Our findings provide mechanistic accounts for the differences between affective and semantic valence representations and indicate how such representations may play a role in associative learning and decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call