Abstract

This paper guides decision making in more sustainable urban water management practices that feed into a circular economy by presenting a novel framework for conceptually designing and strategically planning wastewater treatment processes from a resource recovery perspective. Municipal wastewater cannot any longer be perceived as waste stream because a great variety of technologies are available to recover water, energy, fertilizer, and other valuable products from it. Despite the vast technological recovery possibilities, only a few processes have yet been implemented that deserve the name water resource factory instead of wastewater treatment plant. This transition relies on process designs that are not only technically feasible but also overcome various non-technical bottlenecks. A multidimensional and multidisciplinary approach is needed to design water resource factories (WRFs) in the future that are technically feasible, cost effective, show low environmental impacts, and successfully market recovered resources. To achieve that, the wastewater treatment plant (WWTP) design space needs to be opened up for a variety of expertise that complements the traditional wastewater engineering domain. Implementable WRF processes can only be designed if the current design perspective, which is dominated by the fulfilment of legal effluent qualities and process costs, is extended to include resource recovery as an assessable design objective from an early stage on. Therefore, the framework combines insights and methodologies from different fields and disciplines beyond WWTP design like, e.g., circular economy, industrial process engineering, project management, value chain development, and environmental impact assessment. It supports the transfer of the end-of-waste concept into the wastewater sector as it structures possible resource recovery activities according to clear criteria. This makes recovered resources more likely to fulfil the conditions of the end-of-waste concept and allows the change in their definition from wastes to full-fledged products.

Highlights

  • Implementing resource recovery from waste streams is a complex task and requires multidimensional planning and a whole-system perspective [1]

  • To meet the multidimensional requirements that water resource factories (WRFs) need to fulfil, process performance criteria traditionally applied in wastewater treatment plant (WWTP) design need to be extended by new criteria from other research fields, like, e.g., circular economy, industrial process engineering, project management, value chain development, and environmental impact assessment

  • After applying the SPPD-WRF framework, the process selected for implementation has been designed under careful consideration of the site-specific necessities and circumstances in which a new WRF has to operate

Read more

Summary

Introduction

Implementing resource recovery from waste streams is a complex task and requires multidimensional planning and a whole-system perspective [1]. Domestic wastewater cannot any longer be considered as “waste” because it is a resource full of clean water, energy, and valuable materials including nutrients [2]; a sustainable municipal wastewater treatment plant (WWTP) recovers various resources from the wastewater stream and feeds into the circular economy [3,4,5]. To emphasize the need for a paradigm shift towards resource recovery as a standard procedure in the wastewater sector, the term WWTP has been changed into WRF (water resource factory) [6]. When existing WWTPs approach the end of their expected service life span, a unique window of opportunity exists to replace the aging infrastructure with innovative WRFs that integrate resource recovery technologies. Reaching the transition from WWTPs to WRFs can mean a complete reimaging of the treatment process or modifying an existing process design by integrating innovative recovery technologies [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call