Abstract

In this paper, the numerical approximation of solutions of linear stochastic delay differential equations (SDDEs) in the Itô sense is considered. We construct split-step backward Euler (SSBE) method for solving linear SDDEs and develop the fundamental numerical analysis concerning its strong convergence and mean-square stability. It is proved that the SSBE method is convergent with strong order γ = 1 2 in the mean-square sense. The conditions under which the SSBE method is mean-square stable (MS-stable) and general mean-square stable (GMS-stable) are obtained. Some illustrative numerical examples are presented to demonstrate the order of strong convergence and the mean-square stability of the SSBE method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.