Abstract
An efficient numerical method for treating electrons in magnetized plasmas has been developed. The scheme, which is based on the perturbative (δf) gyrokinetic particle simulation, splits the particle electron responses into adiabatic and nonadiabatic parts. The former is incorporated into the gyrokinetic Poisson’s equation, while the latter is calculated dynamically with the aid of the charge conservation equation. The new scheme affords us the possibility of suppressing unwanted high-frequency oscillations and, in the meantime, relaxing the Courant condition for the thermal particles moving in the parallel direction. It is most useful for studying low-frequency phenomena in plasmas. As an example, one-dimensional drift wave simulation has been carried out using the scheme and the results are presented in this paper. This methodology can easily be generalized to problems in three-dimensional toroidal geometry, as well as those in unmagnetized plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.