Abstract

Alternative splicing is a major mechanism regulating pattern of gene expression through the production of multiple mRNAs from a single gene transcript. Any misregulation can cause various human diseases and also have severe effects on embryogenesis. SRSF1 is one of the critical factors regulating alternative splicing at many stages of vertebrate development and any disturbance in SRSF1 leads to serious consequences. In current study, we investigated the effects of loss of the SRSF1 gene using antisense morpholino oligonucleotides (MO) in Xenopus embryogenesis. It is evident from the results of RT-PCR and whole-mount in situ hybridization that SRSF1 is a maternal gene having strong expression in head, eyes and central nervous system. Moreover, SRSF1 morphants exhibited malformed phenotypes, including miscoiled guts, heart and cartilage formation, edema in the head and heart, and small eyes. Especially, in SRSF1 morphants, bone cartilage formation was reduced in the brain and Nkx-2.5 expression was dramatically reduced in the heart of SRSF1 morphants. In addition, a dramatic reduction in functional chordin RNA in SRSF1 morphants was observed suggesting that chordin is one of the targets of SRSF1. Thus, we concluded that SRSF1 is an essential factor for pattern formation including heart, cartilage and germ layers through the regulation of specific genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.