Abstract

The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo. The GSS is composed of a relatively metal-rich, high surface-brightness "core" and a lower metallicity, lower surface brightness "envelope." We present Keck/DEIMOS spectroscopy of red giant stars in six fields in the vicinity of M31's GSS and one field on Stream C, an arc-like feature on M31's SE minor axis at R=60 kpc. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R=17 kpc). This field also contains the continuation of a second kinematically cold component originally seen in a GSS core field at R=21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a radial range of 7 kpc, suggesting a possible bifurcation in the line-of-sight velocities of GSS stars. We also present the first kinematical detection of substructure in the GSS envelope. Using kinematically identified samples, we show that the envelope debris has a ~0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dSph satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the presence of two kinematically cold components in Stream C, and measure intrinsic velocity dispersions of ~10 and ~4 km/s. This compilation of the kinematical (mean velocity, intrinsic velocity dispersion) and chemical properties of stars in the GSS core and envelope, coupled with published surface brightness measurements and wide-area star-count maps, will improve constraints on the orbit and internal structure of the dwarf satellite progenitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call