Abstract
The spiking neural network architecture (SpiNNaker) project aims to deliver a massively parallel million-core computer whose interconnect architecture is inspired by the connectivity characteristics of the mammalian brain, and which is suited to the modeling of large-scale spiking neural networks in biological real time. Specifically, the interconnect allows the transmission of a very large number of very small data packets, each conveying explicitly the source, and implicitly the time, of a single neural action potential or “spike.” In this paper, we review the current state of the project, which has already delivered systems with up to 2500 processors, and present the real-time event-driven programming model that supports flexible access to the resources of the machine and has enabled its use by a wide range of collaborators around the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.