Abstract

During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.