Abstract

Activation of NMDA receptors evokes sustained fictive locomotion in the isolated spinal cord of the sea lamprey Petromyzon marinus ( P. marinus), but in the river lamprey Lampetra fluviatilis ( L. fluviatilis) the ventral root activity is often irregular. A previous study showed that the number of 5-HT immunoreactive fibres, neurones and varicosities are much lower in the spinal cord of L. fluviatilis than in P. marinus. To further analyse the underlying mechanisms, the present study investigated the role of the 5-HT system in stabilising fictive locomotion. In P. marinus a blockade of 5-HT1A receptors by spiperone reversibly increased the frequency and the coefficient of variation. This implies that there is an endogenous release of 5-HT during fictive locomotion that is important for the generation of locomotor activity. In L. fluviatilis bath applied NMDA or d-glutamate evoked in most cases irregular activity. An addition of 5-HT (0.5–2 μM) rapidly stabilised the burst generation and led to a sustained fictive locomotion. In a split-bath configuration, NMDA administered to the rostral part of the spinal cord in P. marinus evoked fictive locomotion in both the rostral part and the first few segments of the caudal part. When spiperone was added to the caudal part, the burst activity changed into tonic activity within 10 min. Taken together, these results indicate that activity in the intrinsic 5-HT system in the lamprey spinal locomotor network contributes significantly to the rhythm generation. The quantitative differences with regard to the 5-HT plexus between P. marinus and L. fluviatilis may account for the observed discrepancy between the two species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call