Abstract

We discuss the spin-orbit orientation of the Fomalhaut planetary system composed of a central A4V star, a debris disk, and a recently discovered planetary companion. We use spectrally resolved, near-IR long baseline interferometry to obtain precise spectro-astrometric measurements across the brG absorption line. The achieved astrometric accuracy of 3 nu-as and the spectral resolution R=1500 from the AMBER/VLTI instrument allow us to spatially and spectrally resolve the rotating photosphere. We find a position angle PAstar=65deg pm 3deg for the stellar rotation axis, perfectly perpendicular with the literature measurement for the disk position angle (PAdisk=156deg pm 0.3deg). This is the first time such test can be performed for a debris disk, and in a non-eclipsing system. Additionally, our measurements suggest unexpected backward-scattering properties for the circumstellar dust grains. Our observations validate the standard scenario for star and planet formation, in which the angular momentum of the planetary systems are expected to be collinear with the stellar spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.