Abstract

The magnetic hyperfine field of tantalum nuclei in a high purity chromium matrix has been measured using the Time Differential Perturbed Angular Correlation technique. The spectra show that the hyperfine field is proportional to the amplitude of the spin density wave of chromium and that the tantalum probe nuclei do not clamp the phase of the spin density wave. The incommensurate antiferromagnetic first order phase transition as well as the spin flip transition have been observed. The temperature dependence of the hyperfine field is shown to deviate from the temperature dependence of the maximum magnetization of the spin density wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call