Abstract

The spike-and-slab restricted Boltzmann machine (ssRBM) is defined to have both a real-valued "slab" variable and a binary "spike" variable associated with each unit in the hidden layer. The model uses its slab variables to model the conditional covariance of the observation-thought to be important in capturing the statistical properties of natural images. In this paper, we present the canonical ssRBM framework together with some extensions. These extensions highlight the flexibility of the spike-and-slab RBM as a platform for exploring more sophisticated probabilistic models of high dimensional data in general and natural image data in particular. Here, we introduce the subspace-ssRBM focused on the task of learning invariant features. We highlight the behaviour of the ssRBM and its extensions through experiments with the MNIST digit recognition task and the CIFAR-10 object classification task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.