Abstract

The sphingosine-1-phosphate (S1P) analogue FTY720 is a potent immunosuppressive agent currently in Phase III clinical trials for kidney transplantation. FTY720 traps lymphocytes in secondary lymphoid organs thereby preventing their migration to inflammatory sites. Previously, we have identified FTY720 as a potent activator of eNOS. As both inhibition of immune responses and stimulation of eNOS may attenuate atherosclerosis, we administered FTY720 to apolipoprotein E-/- mice fed a high-cholesterol diet. FTY720 dramatically reduced atherosclerotic lesion volume (62.5%), macrophage (41.8%), and collagen content (63.5%) after 20 weeks of high-cholesterol diet. In isolated aortic segments and cultured vascular smooth muscle cell, FTY720 potently inhibited thrombin-induced release of monocyte chemoattractant protein-1. This effect was mediated by the S1P3 sphingolipid receptor as FTY720 had no effect on thrombin-induced monocyte chemoattractant protein-1 release in S1P3-/- mice. In contrast to S1P receptors on lymphocytes, FTY720 did not desensitize vascular S1P receptors as arteries from FTY720-treated mice retained their vasodilator response to FTY720-phosphate. We suggest that FTY720 inhibits atherosclerosis by suppressing the machinery involved in monocyte/macrophage emigration to atherosclerotic lesions. As vascular S1P receptors remained functional under FTY720 treatment, S1P agonists that selectively target the vasculature and not the immune system may be promising new drugs against atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.