Abstract

Spherical microphone arrays have been recently studied for a wide range of applications. In particular, microphones arranged around an open or virtual sphere are useful in scanning microphone arrays for sound field analysis. However, open-sphere spherical arrays have been shown to have poor robustness at frequencies related to the zeros of the spherical Bessel functions. This paper presents a framework for the analysis of array robustness using the condition number of a given matrix, and then proposes several robust array configurations. In particular, a dual-sphere configuration previously presented which uses twice as many microphones compared to a single-sphere configuration is analyzed. This paper then shows that high robustness can be achieved without increasing the number of microphones by arranging the microphones in the volume of a spherical shell. Another simpler configuration employs a single sphere and an additional microphone at the sphere center, showing improved robustness at the low-frequency range. Finally, the white-noise gain of the arrays is investigated verifying that improved white-noise gain is associated with lower matrix condition number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.