Abstract

The presence of a primordial magnetic field in the early universe affects the dynamic of the electroweak phase transition enhancing its strength. This effect may enlarge the window for electroweak baryogenesis in the minimal supersymmetric extension of the standard model or even resurrect the electroweak baryogenesis scenario in the standard model. We compute the sphaleron energy in the background of the magnetic field and show that, due to the sphaleron dipole moment, the barrier between topologically inequivalent vacua is lowered. Therefore, the preservation of the baryon asymmetry calls for a much stronger phase transition than required in the absence of a magnetic field. We show that this effect overwhelms the gain in the phase transition strength, and conclude that magnetic fields do not help electroweak baryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.