Abstract

Ascidians eggs are spawned with their cytoskeleton and organelles organized along a preexisting animal-vegetal axis. Fertilization triggers a spectacular microfilament-dependant cortical contraction that causes the relocalization of preexisting cytoplasmic domains and the creation of new domains in the lower part of the vegetal hemisphere. We have investigated the relationship between fertilization, the cortical contraction and the localization of cytoplasmic domains in eggs of the ascidian Phallusia mammillata. We have also examined the link between this first phase of ooplasmic segregation and the site of gastrulation. The cortical contraction was found to be initiated on the side of the egg where intracellular calcium is first released either by the entering sperm or by photolysis of caged InsP3. The cortical contraction carries the sperm nucleus towards the vegetal hemisphere along with a subcortical mitochondria-rich domain (the myoplasm). If the sperm enters close to the animal or vegetal poles the cortical contraction is symmetrical, travelling along the animal-vegetal axis. If the sperm enters closer to the equator, the contraction is asymmetrical and its direction does not coincide with the animal-vegetal axis. The direction of contraction defines an axis along which preexisting (such as the myoplasm) or newly created cytoplasmic domains are relocalized. Two microfilament-rich surface constrictions, the 'contraction pole' and the 'vegetal button' (which forms 20 minutes later), appear along that axis approximately opposite the site where the contraction is initiated. The contraction pole can be situated as much as 55 degrees from the vegetal pole, and its location predicts the site of gastrulation. It thus appears that in ascidian eggs, the organization of the egg before fertilization defines a 110 degrees cone centered around the vegetal pole in which the future site of gastrulation of the embryo will lie. The calcium wave and cortical contraction triggered by the entering sperm adjust the location of cytoplasmic domains along an axis within that permissive zone. We discuss the relation between that axis and the establishment of the dorsoventral axis in the ascidian embryo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.