Abstract
Several factors contribute to the shape of excitatory postsynaptic currents (EPSCs) in CNS neurons, among them the kinetics of presynaptic release, transmitter clearance, and the properties and distribution of postsynaptic receptors. The decays of AMPA receptor-mediated EPSCs at rat cerebellar mossy fibre-granule cell (MF-gc) synapses follow a bi-exponential time-course. The fast component dominates the decay, accounting for 84-94% of the peak amplitude. Here we show that both components of decay, and also the risetimes, became faster during postnatal maturation. At adult, but not immature, synapses, the risetimes and decays of evoked multiquantal EPSCs were similar to those of monoquantal miniature (m)EPSCs. The faster risetimes at mature synapses reflected increased synchrony of multivesicular release, whereas the faster decays appeared to reflect changes in the properties of postsynaptic receptors. Inhibition of glutamate uptake was without effect on evoked EPSCs at both ages. Furthermore, after slowing receptor desensitization with cyclothiazide, the EPSCs at mature synapses decayed as slowly as EPSCs at immature synapses, suggesting that faster glutamate clearance does not account for the developmental speeding of EPSC decay. Our results support previous conclusions that glutamate clearance and receptor deactivation are important determinants of the fast decay component at immature synapses. Desensitization becomes increasingly important during development and plays a major role in shaping EPSC decay at mature synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: European Journal of Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.