Abstract
In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.