Abstract

The speed of evolution on structured populations is crucial for biological and social systems. The likelihood of invasion is key for evolutionary stability. But it makes little sense if it takes long. It is far from known what population structure slows down evolution. We investigate the absorption time of a single neutral mutant for all the 112 non-isomorphic undirected graphs of size 6. We find that about three-quarters of the graphs have an absorption time close to that of the complete graph, less than one-third are accelerators, and more than two-thirds are decelerators. Surprisingly, determining whether a graph has a long absorption time is too complicated to be captured by the joint degree distribution. Via the largest sojourn time, we find that echo-chamber-like graphs, which consist of two homogeneous graphs connected by few sparse links, are likely to slow down absorption. These results are robust for large graphs, mutation patterns as well as evolutionary processes. This work serves as a benchmark for timing evolution with complex interactions, and fosters the understanding of polarization in opinion formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call