Abstract

A one-dimensional lattice of SIR (susceptible/infected/removed) epidemic centres is considered numerically and analytically. The limiting solutions describing the behaviour of the standard SIR model with a small number of initially infected individuals are derived, and expres- sions found for the duration of an outbreak. We study a model for a weakly mixed population distributed between the interacting centres. The centres are modelled as SIR nodes with interac- tion between sites determined by a diffusion-type migration process. Under the assumption of fast migration, a one-dimensional lattice of SIR nodes is studied numerically with deterministic and random coupling, and travelling wave-like solutions are found in both cases. For weak coupling, the main part of the travelling wave is well approximated by the limiting SIR solution. Explicit formulae are found for the speed of the travelling waves and compared with results of numeri- cal simulation. Approximate formulae for the epidemic propagation speed are also derived when coupling coefficients are randomly distributed, they allow us to estimate how the average speed in random media is slowed down.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.