Abstract

We consider the spectral Dirichlet problem for the Laplace operator in the plane Ω∘ with double-periodic perforation but also in the domain Ω• with a semi-infinite foreign inclusion so that the Floquet–Bloch technique and the Gelfand transform do not apply directly. We describe waves which are localized near the inclusion and propagate along it. We give a formulation of the problem with radiation conditions that provides a Fredholm operator of index zero. The main conclusion concerns the spectra σ∘ and σ• of the problems in Ω∘ and Ω•, namely we present a concrete geometry which supports the relation σ∘⫋σ• due to a new non-empty spectral band caused by the semi-infinite inclusion called an open waveguide in the double-periodic medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.