Abstract

Classic cardiac surgery, determined through the function of cardiopulmonary bypass machine and myocardial cardioplegic arrest, represents the most controlled scenario for cardiomyocyte homeostatic disturbances due to systemic inflammatory response and myocardial reperfusion injury. An increasing number of studies have demonstrated that myocardial cell homeostasis in cardiac surgery procedures is a sequence of molecularly interrelated and overlapping mechanisms in the form of apoptosis, autophagy and necrosis, which are activated by a plethora of induced inflammatory mediators and gene-related signaling pathways. In this study, we outline the molecular mechanisms of the cardiomyocyte adaptive homeostatic process and the associated clinical implications, in the settings of classic cardiac surgery procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call