Abstract

Recent measurement on an LC resonator magnetically coupled to a superconducting qubit [Phys. Rev. Lett. 105 (2010) 237001] shows that the system operates in the ultra-strong coupling regime and crosses the limit of validity for the rotating-wave approximation of the Jaynes-Cummings model. By using extended bosonic coherent states, we solve the Jaynes—Cummings model exactly without using the rotating-wave approximation. Our numerically exact results for the spectrum of the flux qubit coupled to the LC resonator are fully consistent with the experimental observations. The smallest Bloch—Siegert shift obtained is consistent with that observed in this experiment. In addition, the Bloch—Siegert shifts in arbitrary level transitions and for arbitrary coupling constants are predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.