Abstract

We investigate the energy spectrum and the Hall effect of electrons on the square lattice with next-nearest-neighbor (NNN) hopping as well as nearest-neighbor hopping. General rational values of magnetic flux per unit cell φ = p/q are considered. In the absence of NNN hopping, the two bands at the center touch for q even, thus the Hall conductance is not well defined at half filling. An energy gap opens there by introducing NNN hoping. When φ =1/2, the NNN model coincides with the mean field Hamiltonian for the chiral spin state proposed by Wen, Wilczek and Zee (WWZ). The Hall conductance is calculated from the Diophantine equation and the E-φ diagram. We find that gaps close for other fillings at certain values of NNN hopping strength. The quantized value of the Hall conductance changes once this phenomena occurs. In a mean field treatment of the t-J model, the effective Hamiltonian is the same as our NNN model. From this point of view, the statistics of the quasi-particles is not always semion and depends on the filling and the strength of the mean field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.