Abstract
The aim of this paper is to study the spectrum of the$L^{p}$Laplacian and the dynamics of the$L^{p}$heat semigroup on non-compact locally symmetric spaces of higher rank. Our work here generalizes previously obtained results in the setting of locally symmetric spaces of rank one to higher rank spaces. Similarly as in the rank-one case, it turns out that the$L^{p}$heat semigroup on$M$has a certain chaotic behavior if$p\in (1,2)$, whereas for$p\geq 2$such chaotic behavior never occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.