Abstract

We present a spectroscopic survey of 318 faint $(R\sim 27$, $L\sim0.1L_*)$, Ly{\alpha}-emission-selected galaxies (LAEs) at 2.5<z<3. A sample of 32 LAEs with rest-frame optical spectra from Keck/MOSFIRE are used to interpret the LAE spectra in the context of their systemic redshifts. We find that the Ly{\alpha} emission of LAEs is typically less spectrally extended than among samples of more luminous continuum-selected galaxies (LBGs) at similar redshifts. Using the MOSFIRE subsample, we find that the peak of the Ly{\alpha} line is shifted by +200 km/s with respect to systemic across a diverse set of galaxies including both LAEs and LBGs. We also find a small number of objects with significantly blueshifted Ly{\alpha} emission, a potential indicator of accreting gas. The Ly{\alpha}-to-H{\alpha} line ratios suggest that the LAEs have Ly{\alpha} escape fractions $f_{\rm esc,Ly{\alpha}} \approx 30$%, significantly higher than typical LBG samples. Using redshifts calibrated by our MOSFIRE sample, we construct composite LAE spectra, finding the first evidence for metal-enriched outflows in such intrinsically-faint high-redshift galaxies. These outflows have smaller continuum covering fractions $(f_c \approx 0.3)$ and velocities $(v_{\rm ave} \approx 100-200$ km/s, $v_{\rm max} \approx 500$ km/s$)$ than those associated with typical LBGs, suggesting that gas covering fraction is a likely driver of the high Ly{\alpha} and Ly-continuum escape fractions of LAEs. Our results suggest a similar scaling of outflow velocity with star formation rate as is observed at lower redshifts $(v_{\rm outflow} \sim {\rm SFR}^{0.25})$ and indicate that a substantial fraction of gas is ejected with $v > v_{esc}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.